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Abstract: The knowledge of the characteristics of the atmospheric turbulence is of fundamental
importance in order to improve the performances of the adaptive optics systems in the next
generation of telescopes. Starting from the statistical description of the turbulence, we derive a
random field spatial model of the turbulent phase. Then we use this spatial statistical model to
compute the spatial innovation. Finally, from the temporal covariances of the spatial innovation
we estimate the number of the turbulence layers and their characteristics.

1. INTRODUCTION

Thanks to the technological improvement, the current
generation of ground based telescopes house lenses of sev-
eral meter diameter. However, changes in the atmosphere
refraction index influence the beams arriving from a star:
Each beam is delayed of a different phase, which depends
on its path and on the current atmospheric turbulence.
Because of the different values of these delays, a flat wave-
front coming from a star is no more flat when it arrives
on the telescope lens. This significantly reduces the real
resolution of the telescope. The set of values of the phase
delays of the beams arriving on the telescope pupil are
commonly called turbulent phase.

To reduce the problems due to the presence of the atmo-
spheric turbulence, telescopes are usually provided with
an Adaptive Optics (AO) system (Roddier (1999)): This
commands a set of correction mirrors (or deformable mir-
rors) to adapt their shapes to the opposite of the current
value of the turbulent phase. Thus the beams arriving on
the telescope pupil, after passing through the deformable
mirrors, have a residual turbulent phase as close to zero as
possible. The tasks of the AO system can be summarized
as estimating the current turbulent phase, predicting the
new one, and computing the proper control input for
the set of deformable mirrors. Notice that the control
is commonly delayed of two sample periods because of
the time for image acquisition and phase reconstruction
(see Le Roux et al. (2004), Le Roux (2003)): Thus the
prediction step is of fundamental importance for the per-
formances of the AO system.

? This work forms part of the ELT Design Study and is supported
by the European Commission, within Framework Programme 6,
contract No 011863.

A standard AO system can correct the phases only for
a small portion of the sky. Multi Conjugated Adaptive
Optics (MCAO) can be used to achieve a large sky
coverage (Le Roux (2003)). The atmosphere is modeled
as a linear combination of layers translating, at different
altitudes, over the telescope pupil. In a MCAO system,
the atmosphere structure is completely reconstructed and
each mirror corrects the turbulent phase associated to one
of the atmospheric layers.

Hence, to make the MCAO system effective, a good turbu-
lence reconstruction algorithm is needed. Furthermore the
AO (or MCAO) system can exploit the knowledge of the
turbulence’s characteristics to improve the performances of
the prediction step. In this paper we propose an innovative
technique to estimate the turbulence structure. In partic-
ular we aim at estimating the number of significant layers,
their energy, and their velocities, from the measured turbu-
lent phases. The proposed procedure provides estimates of
these parameters, which, integrated with the information
about the layer altitudes, shall make the overall MCAO
(or AO) system more effective.

The paper is organized as follows. In Section 2 the com-
mon turbulence statistical model is described. Section 3
introduces a Markov Random Field spatial representation
for the atmospheric turbulence. Section 4 presents the
core of our procedure for atmospheric structure estimation.
We conclude in Section 5 with discussing some simulation
results.

2. TURBULENCE PHYSICAL MODEL

The spatial statistical characteristics of the turbulent
phase φ are typically described by means of the structure
function, which measures the averaged difference between
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the phase at two points at locations r1 and r2 of the
wavefront, which are separated by a distance r on the
aperture plane (Fig. 1),

Dφ(r) = E
[
(φ(r1)− φ(r2))2

]
.

The structure function Dφ is related to the covariance
function of φ, Cφ(r) = 〈φ(r1), φ(r2)〉, as:

Dφ(r) = 2
(
σ2
φ − Cφ(r)

)
, (1)

where σ2
φ is the phase variance.

Fig. 1. Telescope image domain: Two points, r1 and r2,
separated by a distance r on the telescope aperture
plane.

According to the Von Karman theory, the phase structure
function evaluated at distance r is the following (see Conan
(2000)):

Dφ(r) =
(
L0

r0

)5/3

c

[
Γ(5/6)

21/6
−
(

2πr
L0

)5/6

K5/6

(
2πr
L0

)]
,

where K·(·) is the MacDonald function (modified Bessel
function of the third type), Γ is the Gamma function, L0

is the outer scale, r0 is a characteristic parameter called
the Fried parameter (see Fried (1965)), and the constant
c is:

c =
21/6Γ(11/6)

π8/3

[
24
5

Γ(6/5)
]5/6

.

From the relation between the structure function and the
covariance (1), the spatial covariance of the phase between
two points at distance r results

Cφ(r) =
(
L0

r0

)5/3
c

2

(
2πr
L0

)5/6

K5/6

(
2πr
L0

)
. (2)

Notice that in real applications only a finite number of
sensors is available. These are usually distributed on a grid,
thus the turbulent phase is measured only on a discrete
domain L, which is that of Fig. 2(b), i.e. a sensor is placed
at each node of the grid. Without loss of generality we
assume that sensors are uniformly spaced: The closest
neighbors of each sensor (both along the horizontal and the
vertical directions) are placed at a distance of ps meters.
We denote with φ(u, v, t) the value of the turbulent phase
on the point (u, v) ∈ L at time t.

In order to describe its temporal characteristics, the turbu-
lence is generally modeled as the superposition of a finite
number l of layers: The ith layer models the atmosphere
from hi−1 to hi meter high, where hl ≥ · · · ≥ hi ≥ hi−1 ≥
· · · ≥ h0 = 0 (Fig. 2(a) ). Let ψi(u, v, t) be the value of
the ith turbulent phase layer at point (u, v) on telescope
aperture and at time t. Then the total turbulent phase at
(u, v) and at time t is

φ(u, v, t) =
l∑
i=1

γiψi(u, v, t) , (3)

(a) (b)

Fig. 2. (a) Atmospheric turbulence is modeled as a super-
position of l layers. (b) Discrete domain L.

where γi are suitable coefficients. Without loss of general-
ity we assume that

∑l
i=1 γ

2
i = 1.

The layers are assumed to be stationary and characterized
by the same spatial characteristics, i.e. all the layers
are spatially described by the same structure function.
Furthermore they are assumed to be independent, hence

E[ψi(u, v, t)ψj(u′, v′, t′)] = 0 , 1 ≤ i ≤ l, 1 ≤ j ≤ l,
j 6= i , 1 ≤ u, v ≤ m, 1 ≤ u′, v′ ≤ m.

A commonly agreed assumption considers that each layer
translates in front of the telescope pupil with constant
velocity vi (Taylor approximation Roddier (1999)), thus
ψi(u, v, t+kT ) = ψi(u−vi,ukT, v−vi,vkT, t) , i = 1, . . . , l

(4)
where vi,u and vi,v are the projections of the velocity vector
vi along respectively the horizontal and the vertical axis,
while kT is a delay multiple of the sampling period T . The
velocity vectors are assumed to be different for different
layers, i.e. vi 6= vj if i 6= j.

3. A 2D MARKOV RANDOM FIELD MODEL OF
THE TURBULENCE

In this Section we introduce a (discrete) two-dimensional
Markov Random Field (MRF) spatial model for the tur-
bulence. Since in this Section we are interested in a spatial
model, which is assumed to be time invariant, then here
we consider the time as fixed at a constant value t = t̄.
Furthermore to simplify the notation we will omit t̄ from
equations.

Some observations are now in order. First, since all the
layers are assumed to have the same spatial statistical
characterization, then it immediately follows from Eq. (2)
that each layer can be modeled as an isotropic homoge-
neous random field. Since the aperture plane domain is
actually discrete, as in Fig. 2(b), then the turbulence can
be spatially modeled as a discrete random field.

Furthermore, since the covariance (2) vanishes quite fast
when r becomes larger, then the layers’ random field model
can in fact be well approximated by a Markov Random
Field (see Kinderman and Snell (1980)).

Recall that a spatial process y is a MRF if and only if
the Markov property holds for y, that is: Let (u, v) be a
point on the grid L and let N(u, v) be the set of points
appertaining to the grid L which are in the neighborhood
of (u, v). Usually N(·, ·) is defined as follows:

N(ū, v̄) =
{

(u, v) ∈ L | 0 < (u− ū)2 + (v − v̄)2 ≤ d̄
}
,
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where d̄ is a suitable distance. Then the Markov property
for y can be expressed as follows. Let y(ū, v̄) be the value
of the spatial process y on the point (ū, v̄). Then y(ū, v̄)
is independent on y(u′, v′), (u′, v′) ∈ L − N(ū, v̄) given
{y(u, v), ∀(u, v) ∈ N(ū, v̄)}.
In terms of linear prediction, we can summarize the
Markov property with the following equation:

Ê[ y(ū, v̄) | ∀y(u, v) such that (u, v) 6= (ū, v̄) ] =

= Ê[ y(ū, v̄) | ∀y(u, v) such that (u, v) ∈ N(ū, v̄) ] ,

where Ê[y(1)|y(2), . . . , y(n)] stands for the best linear
prediction of y(1) given y(2), . . . , y(n).

We assume that the turbulence, considered only on the
discrete domain L, can be modeled as a (scalar) MRF.
As proved in Woods (1972), we can express y(ū, v̄), the
value of the process on a generic point (ū, v̄), as the best
linear prediction of y(ū, v̄) given its neighbors N(ū, v̄) plus
an “innovation” process e(ū, v̄). According with Roddier
(1981), we assume that the turbulent phase has Gaussian
statistics: Thus the best linear prediction operator Ê[·]
corresponds to the expectation operator E[·]. That is

y(ū, v̄) =
∑

(u,v)∈N(ū,v̄)

a|(ū−u,v̄−v)|y(u, v) + e(ū, v̄) , (5)

where
E[y(ū, v̄)e(u, v)] = σ2

eδū−uδv̄−v
and

E[e(ū, v̄)e(u, v)] =

 σ2
e ū = u, v̄ = v
−a|(ū−u,v̄−v)|σ

2
e (u, v) ∈ N(ū, v̄)

0 otherwise
.

In the above equations we denoted the Kronecker’s delta
with δu. That is

δu =
{

1 u = 0
0 otherwise .

Furthermore {ai} are suitable coefficients which lead to
the best linear prediction of y(ū, v̄) given its neighbors
(see Soderstrom (1994)).

Notice that the MRF representation provides only a statis-
tical approximation of the real process. However, as long
as d̄ is chosen sufficiently large, this can be considered a
good approximation.

To conclude, since the layers have the same statistical
characterization, each layer can be described using the
model of Eq. (5). That is

ψi(ū, v̄) =
∑

(u,v)∈N(ū,v̄)

a|(ū−u,v̄−v)|ψi(u, v) + ei(ū, v̄) , (6)

for i = 1, . . . , l. Since the layers are independent then
E[ei(ū, v̄)ej(u, v)] = 0 , (7)

if i 6= j, while

E[ei(ū, v̄)ej(u, v)] =

 σ2
e ū = u, v̄ = v
−a|(ū−u,v̄−v)|σ

2
e (u, v) ∈ N(ū, v̄)

0 otherwise
,

(8)
if i = j.

The algorithm for layer detection which will be presented
in the next Sections is based on Eq. (7) and (8).

4. DETECTION OF LAYERS: SPEED AND ENERGY

The aim of this section is the estimation of the turbulence
parameters (l, γ1, . . . , γl, v1,u, . . . , vl,u, v1,v, . . . , vl,v) in the
model given by Eq. (3) and (4). To simplify the notation,
in this Section we consider the 1D case. The generalization
of the procedure to the 2D case is immediate: The major
drawback is that the equations become more complicated.

Thus we assume that the turbulence is a scalar random
process, and at each sampling time we observe only a
window of its values, eventually affected by a zero-mean
white-noise process w. In this case L reduces to an 1D
interval. Let m be the interval size, then L = [1, . . . ,m].
Let y(u, t) be the value of the turbulence on the spatial
position u ∈ L at time t. Then at time t we measure

z(t) = [y(1, t), y(2, t), . . . , y(m, t)]T + w(t) (9)

where
E[w(t)w(t)T ] = σ2

wI .

We assume that the translations of each layer during a
sample period (that is the velocities per frame) are rational
multiples of the pixel size. Then, there exists an integer
number ki, such that

ψi(u, t) = ψi(u+ kivi, t+ kiT ), u = 1, . . . ,m ,

where vi and ψi(u, t) are respectively the ith layer’s veloc-
ity and its value on the position u ∈ L at time t.

In the 1D case Eq. (6) and (8) become respectively

ψi(t̄) =
∑

0<|t−t̄|≤d̄

a|t−t̄|ψi(t) + ei(t̄), i = 1, . . . , l , (10)

and

E[ei(t̄)ej(t)] =

 σ2
e i = j, t̄ = t
−a|t−t̄|σ2

e i = j, 0 < |t− t̄| ≤ d̄
0 otherwise

. (11)

Let z′(t) be a vector containing all the internal measure-
ments of the turbulence at time t, that is the measurements
on each node u ⊂ L such that u > d̄, u < m− d̄+1. Then,
notice that the spatial prediction, (5) and (10), can be
written as follows:

z′(t) = Fz(t) + ξ(t) (12)

where

ξ(t) =
[
e(t+ d̄+ 1) . . . e(m− d̄)

]T
,

while

F =


. . .

. . . ad̄ . . . a1 0 a1 . . . ad̄ . . .
. . . ad̄ . . . a1 0 a1 . . . ad̄ . . .

. . .

 .

In the 1D case the parameters to be estimated are
(l, γ1, . . . , γl, v1, . . . , vl). To this aim, first we compute ξ(t)
from Eq. (12). Then we compute the following covariances:

Cξ,τ = E[ξ(t)ξ(t+ τ)T ] , 0 ≤ τ ≤ T̄ .

It immediately follows from (11) that the matrix Cξ,τ is a
Toeplitz matrix, i.e.
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Cξ,τ =



cτ,0 cτ,1 cτ,2

cτ,−1
. . . . . . . . .

cτ,−2
. . . . . . . . . cτ,2
. . . . . . . . . cτ,1

cτ,−2 cτ,−1 cτ,0


. (13)

When ki = 1,∀i, there exists a simple expression for the
coefficient cτ,k:

cτ,k =
l∑
i=1

γ2
i

σ2
eδviτ−k +

d̄∑
j=1

−ajσ2
eδviτ+j−k+

+
d̄∑
j=1

−ajσ2
eδviτ−j−k

 , 1 ≤ τ ≤ T . (14)

Notice that in the above expression we can distinguish
2d̄+ 1 terms associated to the lth layer: Actually the most
interesting term is that determined by δviτ−k and it is
equal to σ2

e (that is the maximum of the terms due to the
layer).

In the general case, ki 6= 0, cτ,k can still be written as a
linear combination of terms due to the single layers, but
the contributes due to a layer have a more complicated
expression. However we still have that the term determined
by δkivi−k is σ2

e .

If σ2
w = 0, then Eq. (14) is valid for τ = 0 too. Since during

the reconstruction process the signal has been de-noised,
in this Section we assume that σ2

w = 0.

Let rτ be the following discrete signal

rτ (t) =
{
cτ,t −m+ 1 ≤ t ≤ m− 1
0 otherwise

then rτ summarizes the information contained in Cξ,τ .
Thus

r̄(t) =
T̄∑
τ=0

rτ (t− τ(2m− 1)−m)δ|t−τ(2m−1)|<m

summarizes the information in Cξ,τ , τ = 0, . . . , T̄ .

Exploiting the a priori knowledge on the structure of (13),
we propose the following procedure to compute the layers.

We begin with the following two definitions.
Definition 1. Two velocities vi and vj are said to be
distinguishable in t̄ temporal instants on the domain L
if there exist t̄i, t̄j , with 1 ≤ t̄i, t̄j ≤ t̄, such that t̄ivi ∈ L,
t̄i|vi − vj | ≥ 2d̄+ 1 and t̄jvj ∈ L, t̄j |vi − vj | ≥ 2d̄+ 1.

This definition can be easily generalized as follows.
Definition 2. The velocities (v1, . . . , vl) are said to be
distinguishable in t̄ temporal instants on the domain L
if for each (i, j), with i 6= j, (vi, vj) are distinguishable.

A crucial observation here is that

r0(t) =

 σ2
e t = 0
−a|t−t̄|σ2

e 0 < |t| ≤ d̄
0 otherwise

,

that is, when τ = 0, the contribution of all the layers
is positioned around the coordinate t = 0. When τ >
0 the contribution of each layer moves of a quantity

which depends on the layer velocity. Since the velocities
of different layers are assumed to be different, when τ
becomes larger the distance between the layers in rτ
becomes larger too. Thus when τ is sufficiently large the
contribute of different layers is separated in rτ . Exploiting
this observation it is sufficient to search in rτ for separated
sums of “bases”. We propose the following algorithm:
Algorithm 1. Detection of the layers
Step 1: Rough estimation of the velocities
Ŝl̂ = ∅;
for τ = T̄ : 1

for t = −m+ 1 : m− 1
v = t/τ ;
if (rτ (t) 6= 0 ∧
∧ rτ (t) = max

(
rτ (t− d̄), . . . , rτ (t+ d̄)

))
∧

∧
(
Ŝl̂ ∩ [v − d̄/τ, v + d̄/τ ] = ∅

)
Ŝl̂ = Ŝl̂ ∪ v;

end
end

end
l̂ = |Ŝl̂|;
{v̂1, . . . , v̂l̂} = Ŝl̂;
Step 2: Updating the velocities and estimating the weights
for i = 1 : l̂
γ̂i = 0;
for τ = 1 : T̄

if
((
Ŝl̂ ∩ [v̂i − d̄/τ, v̂i + d̄/τ ] = v̂i

)
∧

∧
(

max(rτ (v̂iτ − d̄), . . . , rτ (v̂iτ + d̄)) > γ̂2
i

))
γ̂i = (max(rτ (v̂iτ − d̄), . . . , rτ (v̂iτ + d̄))1/2;
v̂i = (arg max(rτ (v̂iτ − d̄), . . . , rτ (v̂iτ + d̄)))/τ ;

end
end

end

where Ŝl̂ is the set of the detected velocities. Then the
following proposition holds.
Proposition 1. Let (l, v1, . . . , vl, γ1, . . . , γl) be the true
turbulence parameters and (l̂, v̂1, . . . , v̂l̂, γ̂1, . . . , γ̂l̂) those
learnt with the proposed algorithm. If the velocities
(v1, . . . , vl) are distinguishable in t̄ temporal instants on
the domain L, then l̂ = l and v̂i = vi, γ̂i = γi, i = 1, . . . , l.

The above Proposition represents the main result of this
paper: In fact it provides a theoretical foundation for the
proposed algorithm.

4.1 Dealing with data

In the previous section we have considered Cξ,τ computed
as the expectation E[ξ(t)ξ(t+ τ)T ]. Consequently also the
values of rτ (·) are the expected ones. Since in practical
applications we cannot have directly access to the expected
values we have to compute them from data.

We assume to have N + 1 consecutive measurements
(z(0), . . . , z(N)). Let ξ̂(t), 0 ≤ t ≤ N be the sampled
value of ξ at time t reconstructed using the measurements.
Then assuming the process to be wide-sense ergodic, we
have that
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lim
N−→+∞

1
N − τ

N−τ∑
i=1

ξ̂(i)ξ̂(i+ τ)T = E[ξ(i)ξ(i+ τ)T ] .

We first assume that the measurements are not affected
by noise. In practice, since we have only a finite number of
measurements to estimate the expected values, we have
only an estimate r̂τ (t) of rτ (t). Then we introduce a
threshold, σ̄2, to distinguish when r̂τ has to be considered
practically zero:{

rτ (t) = 0 if r̂τ (t) < σ̄2

rτ (t) ≈ r̂τ (t) otherwise .

Notice that in this way we eventually discard layers with
energy lower than σ̄2. Since we know that r0(t) should be
equal to zero when d̄ < |t| ≤ m− 1, then we can estimate
σ2

0 , the variance of r̂0(t) d̄ < |t| ≤ m − 1, and set, for
example, σ̄2 = 4σ2

0 . Otherwise, σ̄2 can be manually set to
the minimum energy of the layers that we want to detect.

Because of the finite number of samples N , it can hap-
pen that Algorithm 1 provides an estimate such that∑l̂
i=1 γ̂

2
i > 1. Hence we have to modify the algorithm to

take into account this problem. Actually when
∑l̂
i=1 γ̂

2
i >

1 we reduce the number of layers: Let the layers be sorted
in decreasing order of energy and let l̄ be such that∑l̄
i=1 γ̂

2
i > 1 while

∑l̄−1
i=1 γ̂

2
i <= 1, then

l̂ = arg min
l={l̄,l̄−1}

|1−
l̄−1∑
i=1

γ̂2
i | .

The main drawback of having noisy measurements is that,
even if asymptotically E[w(t)w(t + τ)T ] = 0, τ 6= 0,
this covariance estimated by a finite number of samples
is not exactly equal to zero. This in practice implies an
increase in the number of samples needed to achieve the
same performance of the noise-free case.

Taking in account of these considerations the algorithm
becomes:
Algorithm 2. Detection of the layers
Step 1: Rough estimation of the velocities
Ŝl̂ = ∅;
for τ = T̄ : 1

for t = −m+ 1 : m− 1
v = t/τ ;
if
(
r̂τ (t) > σ̄2 ∧
∧ r̂τ (t) = max

(
r̂τ (t− d̄), . . . , r̂τ (t+ d̄)

))
∧

∧
(
Ŝl̂ ∩ [v − d̄/τ, v + d̄/τ ] = ∅

)
Ŝl̂ = Ŝl̂ ∪ v;

end
end

end
l̂ = |Ŝl̂|;
{v̂1, . . . , v̂l̂} = Ŝl̂;
Step 2: Updating the velocities and estimating the weights
for i = 1 : l̂
γ̂i = 0;
for τ = 1 : T̄

if
((
Ŝl̂ ∩ [v̂i − d̄/τ, v̂i + d̄/τ ] = v̂i

)
∧

∧
(

max(r̂τ (v̂iτ − d̄), . . . , r̂τ (v̂iτ + d̄)) > γ̂2
i

))

γ̂i = (max(r̂τ (v̂iτ − d̄), . . . , r̂τ (v̂iτ + d̄))1/2;
v̂i = (arg max(r̂τ (v̂iτ − d̄), . . . , r̂τ (v̂iτ + d̄)))/τ ;

end
end

end
[γ̂1, . . . , γ̂l̂, v̂1, . . . , v̂l̂] = sort(γ̂1, . . . , γ̂l̂, v̂1, . . . , v̂l̂);
if
(∑l̄

i=1 γ̂
2
i > 1

)
ltmp = 1;
while

(∑l̄tmp

i=1 γ̂2
i < 1

)
ltmp = ltmp + 1

end
if (l = 1) ∨

(
(
∑l̄tmp

i=1 γ̂2
i − 1) < (1−

∑l̄tmp−1
i=1 γ̂2

i )
)

l̂ = ltmp;
Ŝl̂ = {v̂1, . . . , v̂ltmp

};
{γ̂1, . . . , γ̂l̂} = {γ̂1, . . . , γ̂l̂tmp

}/(
∑l̄tmp

i=1 γ̂2
i );

else
l̂ = ltmp-1;
Ŝl̂ = {v̂1, . . . , v̂ltmp−1};

end
end

Where sort(·) is a function which sorts the detected
layers in decreasing energy order. Notice that Algorithm 2
reduces to Algorithm 1 when the sample covariances are
substituted with the exact covariances.

Notice that the sum of the layer energies can be less than
1, this because the algorithm admits, in the finite number
of samples case, that not all the layers have been detected.

5. SIMULATIONS

5.1 1D simulations

Even if our goal is that of applying the proposed algorithm
to a 2D signal, we first present a 1D example to provide
some intuition on the obtained results.

We consider the case of the following values for the
parameters: l = 4, v1 = −3.13, v2 = −5.745, v3 = −7.42,
v4 = −8.1, γ2

1 = 0.31, γ2
2 = 0.3, γ2

3 = 0.2, γ2
4 = 0.19.

The system is simulated for N = 5000 temporal instants.
Fig. 3 shows the estimated r̂τ (·), τ = {0, 3, 6}. In Table 1
we summarize the results: vi and γi corresponds to the
true values of the parameters, v̂i and γ̂i are the estimated
ones. Notice that the algorithm has detected the correct
number of layers, i.e. l̂ = l. The velocities are written in
[pixels/frame].

Table 1. Detection of the layers.

1st layer 2nd layer 3rd layer 4th layer

vi −3.125 −5.75 −7.375 −8.143

v̂i −3.12 −5.75 −7.38 −8.14

γ2
i 0.31 0.3 0.2 0.19

γ̂2
i 0.319 0.282 0.183 0.216

5.2 2D simulations

Since usually the layers move slowly over the telescope
pupil here we consider three examples of layer detection
where the layers translate less than a pixel per frame. To
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Fig. 3. In blue solid line r̂τ (·), τ = {0, 3, 6} estimated
by the sample covariances. In red dashed line the
detected layers.

make this possible we have simulated the layers at a sub-
pixel scale: A 10 × 10 matrix of sub-pixels has been used
to simulate each pixel in L. In these simulations we set the
simulation parameters to σw = 0 and N = 5000.

The results of our simulations are reported in Table 2,3,4:
vi,u, vi,v and γi correspond to the true values of the
parameters, v̂i,u, v̂i,v and γ̂i are the estimated ones. The
velocities are written in [pixels/frame].

The results obtained with the proposed method are quite
encouraging: Indeed in all these examples the number of
layers has correctly been estimated, i.e. l̂ = l, and the
estimated parameters are quite close to the true ones.

Table 2. Detection of the layers.

1st layer 2nd layer 3rd layer 4th layer

vi,u 0.216 0.391 0.612 0.795

vi,v 0 0 0 0

γ2
i 0.31 0.3 0.2 0.19

v̂i,u 0.2162 0.3913 0.6122 0.7949

v̂i,v 0 0 0 0

γ̂2
i 0.3112 0.3007 0.2005 0.1876

Table 3. Detection of the layers.

1st layer 2nd layer 3rd layer 4th layer

vi,u 0.216 −0.191 0 0

vi,v 0 0 0.11 0.287

γ2
i 0.41 0.25 0.2 0.14

v̂i,u 0.2162 −0.1905 0 0

v̂i,v 0 0 0.1111 0.2881

γ̂2
i 0.4137 0.2495 0.1973 0.1395

6. CONCLUSIONS

In this paper we have presented a new approach for the
detection of atmospheric turbulence layers.

Exploiting a MRF representation of the turbulent phase
we have estimated the temporal cross-covariances of the
spatial innovation. The proposed algorithm properly ana-
lyzes these cross-covariances and extracts the information

Table 4. Detection of the layers.

1st layer 2nd layer 3rd layer 4th layer 5th layer

vi,u 0.13 −0.071 0 0 0.08

vi,v 0 0 0.056 −0.087 0

γ2
i 0.27 0.23 0.2 0.16 0.14

v̂i,u 0.1321 −0.0714 0 0 0.08

v̂i,v 0 0 0.0556 −0.0877 0

γ̂2
i 0.2505 0.2332 0.1968 0.1620 0.1576

about the turbulent phase structure, i.e. the number of
layers and their characterizing parameters.

With Proposition 1 we claim that asymptotically our
algorithm correctly estimates the turbulence parameters.
The computational cost of the algorithm is mainly due
to the estimation of the covariances: Since the algorithm
works properly only with a good estimation of Cξ,τ , τ =
1, . . . , T̄ , a quite large number of samples is needed to
estimate them.

The results obtained in this paper can be exploited to
improve the performances of the overall system: It should
be of particular interest the integration of this procedure
in a MCAO system and its use for temporal prediction of
the turbulent phase.

ACKNOWLEDGEMENTS

We are pleased to acknowledge the colleagues of the ELT
Project, in particular Dr. Michel Tallon at CRAL-Lyon,
and Dr. Enrico Fedrigo at ESO-Munich, for their precious
help in supporting us with the astronomical view of the
problem, and for many valuable and enjoyable discussions
on the subject.

REFERENCES

R. Conan. Modelisation des effets de l’echelle externe de
coherence spatiale du front d’onde pour l’observation a
haute resolution angulaire en astronomie. PhD thesis,
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